Alignment to College and Career Ready Standards: Overall Summary

The instructional materials reviewed partially meet the expectations for alignment to the CCSSM. In Gateway One, the instructional materials meet the expectations for focus, but they do not meet the expectations for coherence. This leads to the materials partially meeting the expectations for focus and coherence. In Gateway 2, the materials partially meet the expectations for both rigor and balance and practice-content connections, which means the materials partially meet the expectations for rigor and the mathematical practices.

See Rating Scale
Understanding Gateways

Alignment

|

Partially Meets Expectations

Gateway 1:

Focus & Coherence

0
7
12
14
10
12-14
Meets Expectations
8-11
Partially Meets Expectations
0-7
Does Not Meet Expectations

Gateway 2:

Rigor & Mathematical Practices

0
10
16
18
11
16-18
Meets Expectations
11-15
Partially Meets Expectations
0-10
Does Not Meet Expectations

Usability

|

Not Rated

Not Rated

Gateway 3:

Usability

0
22
31
38
0
31-38
Meets Expectations
23-30
Partially Meets Expectations
0-22
Does Not Meet Expectations

Gateway One

Focus & Coherence

Partially Meets Expectations

+
-
Gateway One Details

The instructional materials reviewed for Grade 8 Big Ideas partially meet the expectations for Gateway One. Future grade-level standards are rarely assessed and could be easily modified or omitted. The materials devote a majority of the time to the major work of the grade. The instructional materials infrequently connect supporting work with the major work of the grade. Although the materials provide a full program of study that is viable for a school year, students are not always given extensive work with grade-level problems. Connections between grade-levels and domains are missing. Overall, the instructional materials meet the expectations for focusing on the major work of the grade, but the materials are not always consistent and coherent with the standards.

Criterion 1a

Materials do not assess topics before the grade level in which the topic should be introduced.
2/2
+
-
Criterion Rating Details

The materials meet the expectation for not assessing topics before the grade-level in which they should be introduced. The majority of the assessments are on grade-level with a few items that could be easily modified or removed to remain on grade-level.

Indicator 1a

The instructional material assesses the grade-level content and, if applicable, content from earlier grades. Content from future grades may be introduced but students should not be held accountable on assessments for future expectations.
2/2
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 meet the expectations for assessing the grade-level content and, if applicable, content from earlier grades. Summative assessments focus on the Grade 8 standards with few occurrences of above grade-level work.

The following assessments were reviewed for this indicator from the print and digital materials: forms A and B of the Chapter Tests, Chapter Quizzes, Standards Assessments, and Alternate Assessments.

The majority of items are within Grade 8, and few above-grade level items were found. There are some items that assess two domains and call for students to explain the meaning behind mathematical concepts and/or reasoning behind their solutions.

  • On all Chapter 3 assessments, students are required to explain angle relationships and why triangles are or are not similar. This meets the depth of standards 8.G.5 and 8.EE.5. Similarly, in Chapter 4, several questions have students work with slope and y-intercepts (8.EE.5 and 8.F.4). For example, on the Chapter 4 Alternative Assessment, students must calculate slope, write an equation, explain the meaning of the slope, and use the equation to solve related real-world problems. Similar questions are included on forms A and B.
  • On form A (items 25 and 26) and B (items 24 and 25) of the Chapter 7 test, students are required to find the distance between two points. These questions do not prompt students to use the Pythagorean theorem nor are they provided a graph. In Grade 8, students are expected to use the Pythagorean theorem to find distance (8.G.8). In lesson 7.5, examples 2 and 3, the procedure for using the distance formula is explicitly taught after directed exploration found in Activity 3 on page 319.
  • On the Chapter 7 Standards Based Assessment, students must identify and use the Pythagorean theorem, and they are asked to find a missing hypotenuse on three different triangles in a composite figure (8.G.7). They must also “show [their] work clearly” and explain how they can identify any irrational numbers (8.NS.A).
  • On the alternative assessment in Chapter 7, students must use the Pythagorean theorem to find the missing sides of the given right triangles, and they also identify if the two are similar. In 8.G.4, students are expected to find similarity through transformations and dilations, not by finding proportionality in corresponding sides as noted in the answers on page A13.

It should also be noted that there are items on the Chapter 9 assessments, problems 35-36, and end-of-course tests that do not have connections to any Grade 8 standard (e.g., choosing proper display, explain why the data is misleading).

Criterion 1b

Students and teachers using the materials as designed devote the large majority of class time in each grade K-8 to the major work of the grade.
4/4
+
-
Criterion Rating Details

The Grade 8 Big Ideas materials meet expectations for devoting the large majority of class time to the major work of the grade-level. The materials engage students in the major work of the grade more than 65 percent of the time.

Indicator 1b

Instructional material spends the majority of class time on the major cluster of each grade.
4/4
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 meet the expectations for focus on major clusters. The Grade 8 instructional materials do spend the majority of class time on the major clusters of the grade.

The Common Core State Standards to Book Correlation (pages xx-xxvi) and the Book to Common Core State Standards Correlation (page xxvii) were used to identify major work, as well as the first page in each chapter which includes common core progression information, a chapter summary, and a pacing guide (and related online pages). The pacing guide provides the number of days to spend on each chapter opener, activity, lesson, any extensions, and review/assessment days. This guide was used to determine the number of instructional days allotted by the publisher for each standard found in the major work of the grade. Reviewers also examined all lessons with standards identified by the publisher as non-major work to ensure that these lessons did not contain enough material to strengthen major work.

All percentages are greater than 65 percent and were calculated to reflect the chapters, lessons, and instructional time spent on major work:

  • The material devoted approximately 80 percent of chapters to major work of the grade. Chapters 8 and 9 were excluded because they only address supporting standards. If over 50 percent of a chapter addressed major work, then the chapter was counted as major work.
  • Of the lessons, 86 percent (44 out of 51) were dedicated to major work. One lesson, 7.4, identified as major work did not reach the depth of the standard and was not counted as major work. Lesson 7.4, Approximating Cube Roots, is aligned to 8.EE.2, but students are not required to use square and cube roots to represent solutions to equations.
  • Of the instructional days, 85 percent (125 out of 148 ) in the Grade 8 materials are spent focusing on the major clusters of Grade 8. Days were counted based on the recommendation of the pacing guide in the beginning of each chapter for all lessons reviewers found aligned to major work.

Criterion 1c - 1f

Coherence: Each grade's instructional materials are coherent and consistent with the Standards.
4/8
+
-
Criterion Rating Details

The instructional materials reviewed for Grade 8 do not meet the expectations for coherence. The instructional materials infrequently use supporting content as a way to continue working with the major work of the grade. The materials include a full program of study that is viable content for a school year. Content from prior grades is not clearly identified or connected to grade-level work, and not all students are given extensive work with grade-level problems. Material related to prior, grade-level content is not clearly identified or related to grade-level work. These instructional materials are not shaped by the cluster headings in the standards. Overall, the Grade 8 materials do not support coherence and are not consistent with the progressions in the standards.

Indicator 1c

Supporting content enhances focus and coherence simultaneously by engaging students in the major work of the grade.
1/2
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 partially meet the expectations for having supporting content that enhances focus and coherence simultaneously by engaging students in the major work of the grade. The structure of the chapters and the lessons in the Grade 8 materials do not fully engage students in both supporting and major work to allow natural connections.

Supporting work is identified in Chapters 7, 8, and 9 and shows some connection to major work.

Connections to major work are only identified in Chapter 7 as students move from finding square and cube roots (8.EE.2) in lessons 1 and 2 to using the Pythagorean theorem to find the missing sides of right triangles (8.G.7) in lesson 3, and finally, working with irrational numbers in order to categorize real numbers (8.NS.2) in lesson 4. While an attempt was made to connect these standards by sequencing them in one chapter, they are isolated and addressed in different lessons with one activity and three items found to connect them.

  • In Approximating Square Roots, Activity 2 on page 308, students must use the Pythagorean theorem to find the diagonal of a square situated on a number line between 0 and 1 and then estimate the length of the diagonal using the number line in the graphic. Lesson 7.4 has students estimate square roots, compare real numbers, and approximate the value of expressions.
  • Items 37-39 in Lesson 7.4 connect 8.G.7 to 8.NS.2 by having students approximate the length of a diagonal of a square or rectangle.
  • An opportunity to have students connect approximating square roots and the Pythagorean theorem is missed in Lesson 7.5 when students are not required to estimate an answer while engaging in the practice and problem solving set, and all solutions are expressed in radical form. This connection could be noted in the margin of Laurie’s Notes on page 318 under Previous Learning, and explicit direction requiring students to find approximations could be included in the exercises to strengthen major work.

Connections between 8.G.C and 8.EE.A are found in Chapter 8, Volume and Surface Area of Similar Solids, due to the formulas containing both rational and irrational numbers as well as exponents. 8.EE.2 could be mentioned in the Previous Learning section found in the margin of Laurie’s Notes in each of the following lessons:

  • Lessons 8.1, 8.2 and 8.3 are aligned to 8.G.9 and 8.EE.7 where examples use equations to solve problems involving volume.
  • In Lesson 8.4, 8.G.9 has connections to 8.G.4 when students use the volumes and surface areas of similar solids to develop understanding of the related formula. While this particular connection is explored in the lesson, this concept regarding three dimensional figures is not addressed until the high school Geometry standards.
  • Also, 8.EE.2 is found in Chapters 7 and 8, but then it is isolated from Chapter 10 where the major work with exponents occurs.

Unidentified connections were also found in Chapter 9 in Lesson 2 in which students draw lines of best fit to model a set of data and then use the slope and y-intercept to make predictions about future events. Laurie’s Notes does mention that students “should know how to make scatter plots and write equations in slope-intercept form,” but 8.EE.6 is not explicitly identified.

Indicator 1d

The amount of content designated for one grade level is viable for one school year in order to foster coherence between grades.
2/2
+
-
Indicator Rating Details

The instructional materials reviewed meet the expectation for having an amount of content designated for one grade level that is viable for one school year in order to foster coherence between grade levels. Overall, the instructional materials reviewed for Grade 8 provide a year’s worth of content as written.

In Big Ideas, the length of each class period is 45 minutes, so 149 45-minute class periods would be needed to cover Chapters 1-10. The 149 days of instruction are outlined in the pacing guide on pages xxxii and xxxiii. This pacing includes one day for a scavenger hunt, one day in each chapter for study help and review before the mid-chapter quizzes, and two days for review and assessment at the end of each chapter. In total, ten days are devoted to Study Help/Quizzes and 20 instructional days spent on chapter review assignments and chapter assessments, which leaves 119 days for instructional lessons, activities, and extension lessons. Before each chapter, information is provided for the teacher on how much time to spend on each section including activities, lessons, and any extensions.

The following extension activity found in Chapter 7 is of particular importance and should not be skipped, as this is the place in the material where 8.NS.1 is fully addressed.

  • Chapter 7, Extension 7.4 - Writing a repeating decimal in rational form (8.NS.1).

The online lesson plans provided in Chapters at a Glance also include detailed information about when to use the supplemental activities such as extra examples as well as performance tasks for each standard. Any additional days of instruction can be spent implementing these tasks or the additional skills practice found in the online resources.

Indicator 1e

Materials are consistent with the progressions in the Standards i. Materials develop according to the grade-by-grade progressions in the Standards. If there is content from prior or future grades, that content is clearly identified and related to grade-level work ii. Materials give all students extensive work with grade-level problems iii. Materials relate grade level concepts explicitly to prior knowledge from earlier grades.
0/2
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 do not meet the expectation for having materials that are consistent with the progressions in the Standards. Materials are not intentionally written to follow the progressions of the grade-level as few lessons are identified as work from prior grade-levels, and there are no lessons identified to connect Grade 8 work to the work of future grades. Materials do not give all students extensive work with grade-level problems although general explanations for how lessons are related to prior knowledge are present.

The materials do not develop according to the grade-by-grade progressions in the standards. Content from prior or future grades is not clearly identified and related to grade-level work.

  • Explanations of Common Core Progressions are given at the beginning of each chapter connecting both Grade 6 and Grade 7 work to the Grade 8 work students will encounter in each of the chapters. These connections to below grade-level work are presented as bulleted lists of skills and are not aligned to specific standards.
  • Math Background Notes include vocabulary review as well as a general explanation of the most important skills and understandings from the prior grade-level(s) found in the “What You Learned Before” activities on the following page. For the most part, these are procedural in nature and do not add connections or meaning to the mathematics which occurred in prior grade-levels. For example, in Chapter 5, the notes instruct teachers to remind students to use inverse operations to isolate a variable, but there is no mention of the underlying properties of equality that make this possible. Other examples include:
    • Chapter 7: Order of operations review cites the “Please Excuse My Dear Aunt Sally” pneumonic before engaging in evaluating expressions with square and cube roots (page T-287).
    • Chapter 10: The steps to multiplying decimals are reviewed, and teachers are encouraged to “remind students to count the number of digits in both factors that appear to the right of the decimal point, and then put that many digits to the right of the decimal point in the answer” instead of using estimation or place value, which would further develop the structure of numbers for struggling learners.
  • The first page of each chapter is What You Learned Before. The teacher page adjacent to this page identifies the CCSS addressed, which is usually from a previous grade-level, but no explanation of what connects this previous material to the upcoming lessons is included.
  • Chapter 1, Section 1 serves as review lesson as students solve one-step equations with rational numbers, but this section is marked as “Learning” 8.EE.7a and 8.EE.7b instead of 6.EE.5 and 7.EE.3.
  • Content of future progressions beyond the current grade-level are not identified in the material nor are these lessons accompanied by an explanation of the progressions.
    • Students find the distance between two points on the coordinate plane using the distance formula in Chapter 7, but the material does not identify this lesson as high school content.

The materials do not give all students extensive work with grade-level problems. The majority of the problems in the exercises require students to produce an answer or solution. There are open ended, reasoning, and critical thinking items which allow students to engage in grade-level work that meets the depth of the standard in most cases. These opportunities to engage in extensive grade-level problems are provided for all students only if they are given the opportunity to access all of them.

  • An assignment guide is provided in each lesson that levels students into basic, average, or advanced. These charts exclude the “basic” learner from the reasoning and critical thinking problems. These problems are critical for all students in order for them to reach the depth of the standard in many of the lessons.
    • For example, in section 4.5, basic learners are excluded from item 23, a critical thinking problem which asks students to reason about the values in the equation in context. Item 22, which requires students to make generalizations about the the graphic representation of all linear equations, is not listed as an opportunity for average or basic learners (8.EE.8).
    • Many lessons contain explanations in Laurie’s Notes of a specific homework problem and how Taking Math Deeper can apply to that problem. Usually it is a simple task that can reach the depth of a standard; however, it is rarely part of the Basic Assignment. If students are assigned Basic or Average Level Assignments, they will often not engage with the problems reaching the full depth of the standard.

The materials do not relate grade-level concepts explicitly to prior knowledge from earlier grades.

  • Each chapter begins with a What You Learned Before page just before the first lesson. These pages contain problems for students from prior grade-levels and/or chapters found earlier in the material. Connections to specific grade-levels or standards are not identified.
  • Laurie’s Notes are found in each lesson. In the margin of these notes for instruction, specific Grade 8 standards that will be addressed are identified. Most of them contain a Previous Learning section that describes prior knowledge students should possess before engaging in the lesson, but again they are not explicit about the particular grade-level or standard tied to the skills or understanding needed. For example, in section 2.6 the Previous Learning states, “Students should know how to plot ordered pairs. Students also need to remember how to solve a proportion.” Neither the specific CCSS standards nor the grade-level is stated.

Overall, explicit connections to prior knowledge are made at a very general level through the chapter and lesson features in this series. Connections are not clearly articulated for teachers and are merely lists of skills without indication of standards, clusters, or domains. There is not a clearly defined progression for teachers to demonstrate how prior knowledge is being extended or developed.

Indicator 1f

Materials foster coherence through connections at a single grade, where appropriate and required by the Standards i. Materials include learning objectives that are visibly shaped by CCSSM cluster headings. ii. Materials include problems and activities that serve to connect two or more clusters in a domain, or two or more domains in a grade, in cases where these connections are natural and important.
1/2
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 partially meet the expectation for fostering coherence through connections at a single grade, where appropriate and required by the Standards. Overall, the materials do not include learning objectives that are visibly shaped by CCSSM cluster headings, but there are some opportunities to connect clusters and domains.

Examples of the materials not including learning objectives that are visibly shaped by CCSSM cluster headings include:

  • Cluster headings were explicitly addressed in the textbook on page xxxv. There is no explanation as to how the lessons are tied together under the cluster heading besides the information found on this page. The language used in the cluster heading was not found.
  • Chapter and lesson titles are connected to, but do not appear to be influenced by, cluster headings. They are often descriptive of specific skills or topics but not the overarching idea of the cluster heading. For example, the “Expressions and Equations” domain has the following headings, which are connected to the these chapter titles:
    • “Work with radicals and integer exponents” is connected to Chapter 1, “Equations.”
    • “Understand the connections between proportional relationships, lines, and linear equations” is connected to Chapter 4, “Graphing and Writing Linear Equations.”
    • “Analyze and solve linear equations and pairs of simultaneous equations” is connected to Chapter 5, “Systems of Linear Equations.”
  • The lesson goal appears in Laurie’s Notes before the lessons in each section and most closely aligns to an objective. These are descriptions of the parts of the standard that are tackled in the lesson and were not found to describe cluster headings.
    • For example, “Today’s lesson is graphing linear equations” is found in section 4.1 and “Today’s lesson is graphing proportional relationships” is found in section 4.3, but neither is shaped by the full meaning of 8.EE.B, which calls for students to understand the connections between proportional relationships, lines, and linear equations.

Examples of the materials providing some opportunities of problems and activities that serve to connect two or more clusters in a domain, or two or more domains in a grade, in cases where these connections are natural and important include the following, but these are not identified for the teacher except in the Chapter 6 example below.

  • In Chapter 6, 8.G.A and 8.F.B are connected in the Activity for Lesson 6.4 when students use the perimeters and areas of similar rectangles (8.G.4) to compare linear and nonlinear functions (8.F.3).
  • In Chapter 9, 8.SP.A and 8.EE.C are connected in Lesson 9.2 when students draw lines of best fit using slope intercept form to investigate patterns of association in bivariate data.
  • The performance tasks could make connections between cluster headings. These tasks present open ended problems with varying ways to represent solutions, but they address one standard at a time with the exception of performance task 8.G.6. Natural connections between 8.G.6 and 8.EE.A occur in this task as students grapple with making connections between the area of the trapezoid and the areas of the embedded right triangles using equivalent expressions and the Pythagorean theorem.

Chapter 7 is the place where the material identifies multiple domains in the same chapter, but the standards are addressed in isolated lessons with few connections across chapters.

Chapter 7 is aligned to the number system, expressions and equations, and geometry domains on page xxxv. An explanation for why these domains were connected was not found in the material. An explanation could be provided in Laurie’s Notes in the “Connect” section where teachers are given a one sentence summary of “yesterday’s learning” and “today’s learning.” It appears in 7.1 and 7.2 when students work with exponents (8.NS) and roots (8.NS), but not in 7.3, which would connect square roots (8.NS) with the Pythagorean Theorem (8.G).

Gateway Two

Rigor & Mathematical Practices

Partially Meets Expectations

+
-
Gateway Two Details

The materials reviewed for Grade 8 partially meet the expectations for Gateway 2, Rigor and Mathematical Practices. All three of the aspects of rigor are present, but procedural skill and fluency are focused on in the materials. There is not a balance of the three aspects of rigor within the grade, specifically where the Standards set explicit expectations for conceptual understanding, procedural skill and fluency, and application. The MPs are not always identified correctly, and the full meaning of the MPs is sometimes missed. The materials set up opportunities for students to engage in mathematical reasoning and partially support teachers in assisting students in reasoning. The materials attend to the specialized language of mathematics.

Criterion 2a - 2d

Rigor and Balance: Each grade's instructional materials reflect the balances in the Standards and help students meet the Standards' rigorous expectations, by helping students develop conceptual understanding, procedural skill and fluency, and application.
5/8
+
-
Criterion Rating Details

The materials reviewed for Grade 8 partially meet the expectations for Gateway 2, Rigor and Mathematical Practices. All three of the aspects of rigor are present, but procedural skill and fluency are focused on in the materials. There is not a balance of the three aspects of rigor within the grade, specifically where the Standards set explicit expectations for conceptual understanding, procedural skill and fluency, and application. The MPs are not always identified correctly, and the full meaning of the MPs is sometimes missed. The materials set up opportunities for students to engage in mathematical reasoning and partially support teachers in assisting students in reasoning. The materials attend to the specialized language of mathematics.

Indicator 2a

Attention to conceptual understanding: Materials develop conceptual understanding of key mathematical concepts, especially where called for in specific content standards or cluster headings.
1/2
+
-
Indicator Rating Details

The instructional materials reviewed partially meet the expectation for developing conceptual understanding of key mathematical concepts, especially where called for in specific content standards or cluster headings. Overall, the development of conceptual understanding is presented in a directed way so that students would not fully develop and refine their ability to reason mathematically.

All sections in the material begin with a one-day activity intended to build understanding of the concept within each section. Most of the activities are hands-on, but they are presented in a step-by-step manner, which leads all students to solve them in the same way and, in turn, produce the same results. This limits opportunities to explore and make connections between various solution paths. The following activities address conceptual development in an explicit way:

  • The initial activity for Chapter 2, Lesson 6 has students find the perimeters and areas of various similar figures. After completing the chart, students have to describe the pattern and find the relationship between perimeter, area, and the original figure. The conceptual understanding of 8.G.4 is the primary goal.
  • Activities in Chapter 4, Lesson 1 address 8.EE.5 by requiring students to find multiple ordered pairs that satisfy the equation, graph them, and then find and check additional ordered pairs. Students understand that in order to be a solution of an equation, a point has to lie on the line.
  • Lessons attending to 8.F are found in Chapter 6. The 6.1 activities have students generate the outputs, or areas of the given two- and three-dimensional figures, using a given input for the length, and then students map these values in activity 1. In activity 2 students generate rules. In the activities for section 6.2, students write equations in problems 1 and 2, and students graph points from a given table to see if the given statements are true in problem 3. These connections are built in a procedural way until students are shown all three representations in Example 3 and the summary of section 6.2. Students are often expected to complete the representation rather than make connections between them.
  • The activities found in Chapter 10, Lessons 1-4, align to 8.EE.1, and all use the expanded form of exponents to help students understand operations with powers and develop a rule using patterns.

On the second day, the lesson is presented through multiple examples that can be reviewed as a class and On Your Own examples that allow students to practice the lesson concept. There is usually one reasoning or logic problem per lesson in the exercises of each section. One problem in each of the lessons is explained at length in the Taking Math Deeper. Lesson notes for the teacher mainly focus on procedures and the steps necessary to solve the problems.

Additional features included in the material show an emphasis on conceptual development:

  • The beginning of each exercise has a section called Vocabulary and Concept Check, and the end of each activity has a section called What is Your Answer? Both of these sections often expect students to explain and demonstrate conceptual understanding through reasoning and writing about the concepts.
  • The online lesson plans also account for sections titled Start Thinking, and the student’s copy is located in the Resources by Chapter book. These questions assist in connecting to previous knowledge that students need in order to engage in a new task and also require explanations, justifications, or comparisons, which are important to conceptual understanding.

In the overall structure of the material, concepts are proceduralized in each section because the activities are accompanied by directed steps. Students are asked to make generalizations in the reasoning and logic items before engaging with the exercises. Communications between the students and teacher addressing conceptual understanding are not always stressed.

Indicator 2b

Attention to Procedural Skill and Fluency: Materials give attention throughout the year to individual standards that set an expectation of procedural skill and fluency.
2/2
+
-
Indicator Rating Details

The instructional materials reviewed for Grade 8 meet the expectation for giving attention throughout the year to individual standards that set an expectation of procedural skill and fluency. Overall, there are many problems provided that help develop procedures and fluencies expected by the grade-level standards.

Many of the assigned problems focus on using procedures to compute an answer. The majority of the other problems in the lessons are word problems that require the use of the procedures found in the examples to solve the problem. Specific examples that reflect procedural development include:

  • In Chapter 1, lessons 1-3, students have many opportunities to engage in 8.EE.7 by following specific steps to solve equations with variables on one or both sides.
  • In Chapter 2, lessons 2 and 3 address 8.G.4, and students are encouraged to use the “rule” when transforming objects. For example, on page 50, the Key Idea states that the translation of (x, y) is (x + a, y + b).
  • In Chapter 4, lesson 1 gives students an equation and has them graph it by creating a table of values, graphing the points, and graphing the line. The equations are all in slope-intercept form, but the table of values is the only suggested solution method (8.EE.5).
  • In Chapter 8, lessons 1 through 3, students complete activities in order to understand the parts of each formula before they are given the steps to follow. Examples give explicit instructions on how to calculate the volumes of cylinders (8.1), cones (8.2), and spheres (8.3). The majority of each section focuses on finding the volume of the shapes with a few opportunities to find missing dimensions.
  • In Chapter 9, lesson 2 has students solve problems involving lines of best fit (8.SP.1, 8.SP.2, 8.SP.3). While there is a real–world context, each problem is written in the same way by prompting students to use a table, graph, write an equation, and use the equation to answer a question.

Additional opportunities to build procedural skill and fluency can be found in the “Fair Game Review” at the end of each lesson, which build fluency by repeating skills found earlier in the material as well as previous grades. Each lesson has extra practice problems in the Record and Practice Journal. Teachers also have access to supplemental worksheet Forms A and B in the Resources by Chapter workbook.

Indicator 2c

Attention to Applications: Materials are designed so that teachers and students spend sufficient time working with engaging applications of the mathematics, without losing focus on the major work of each grade
1/2
+
-
Indicator Rating Details

The materials reviewed partially meet the expectations for being designed so that teachers and students spend sufficient time working with engaging applications of the mathematics, without losing focus on the major work of the grade. Overall, there were few opportunities for students to engage in non-routine problems, and in many cases, the items direct students in such a way that they do not have a chance to decide on alternate ways to solve them.

The following structures and resources sometimes attend to application, but many times are scaffolded for students with steps and given paths to the solution:

  • Performance Tasks for each section are provided online for each grade-level standard. These provide opportunities for students to engage in the mathematics from the section in a new way, but these can sometimes be directive and rarely address more than one standard.
  • Enrichment and Extension is found in Resources by Chapter, and there is one for each lesson. These are not included in the lesson plans provided online, but they are suggested as extra practice. There are questions in these activities that would meet the expectations of application, but a direct path for the answer is provided. For example, in lesson 1.4 students are asked to rewrite the formula for volume of a cylinder. They are given two methods for rewriting the formula with explicit steps for each and then asked which method they prefer.
  • In Appendix A, there are additional opportunities for students to apply what they have learned over the course of the year. This section has four Big Idea Projects. Students look at examples of math in the real world and in a cross-curricular way. The projects contain scaffolding and guide students in how to complete the work.
  • Each lesson exercise has one problem that applies the skill of the lesson, and it is titled Taking Math Deeper in the teacher edition. In the student materials, these problems do not have any special identification. This section provides an extended solution for the teacher for one specific item in the exercises and then provides a related project that the teacher can assign. For example, in Lesson 10.2, “Taking Math Deeper” explains the steps to solving exercise 31, where students show the number of pieces of mail sent by the United States Postal Service in 6 days as a product of powers expression. The related project involves researching the price of a postage stamp and finding the range in the cost.

There are some examples of items that allow students to engage in applying mathematics to the given situations.

  • In Chapter 1 Lesson 2, Solving Multi-Step Equations, there are two activities that address 8.EE.7 on page 11. These problems require students to apply past and current concepts to solve a multistep problem. In both, students may work with a partner to find multiple unknowns.
  • In Chapter 1 Lesson 3, Solving Equations with Variables on Both Sides, item 39 is an opportunity to apply 8.EE.7 in a real world context. Students must find the price of mailing DVDs by setting the two different companies’ rates equal to each other. Students are given a chart with the needed information to solve the problem.
  • As students work with functions (8.F) in Chapter 6 (pages 254, 262), they often work with real-world problems requiring them to write an equation, graph the relationship, and then answer various questions using both the equation and graph. These questions vary as to content and encourage students to think and analyze the relationships.
  • Activity 2 in Chapter 8, lesson 1 has students engage with 8.G.9 by asking students to use a defined amount of wax purchased for $20 to make eight candles of three different sizes and then decide on candle size and price using properties of cylinders. Students are not given guidance on this item, making this a very rigorous problem for students.

While opportunities for application are seen in several features and sections found in the material, evidence of proceduralizing opportunities for application was also found.

  • In Chapter 4, lesson 3, Graphing and Comparing Proportional Relationships (8.EE.5,6), students are presented with two 2-variable relationships, one is in algebraic form and the other in graphical form. Students must write both equations and graph as well. Nearly all problems are application, i.e., cost in dollars/hour, growth in mm/year; however, all are presented in the same format so that students actually follow the procedures more than applying the mathematics.
  • The initial activity for Chapter 5, Lesson 1 begins by asking students to write two equations for a real-world situation involving starting a bed-and-breakfast and finding when it would actually make money. Instead of leaving the problem open for students to solve, the students are walked through writing the equations and given a table to complete using the given equations. In the 5.1 lesson, students solve systems of equations by graphing and are asked to use the graphical representation to compare the relationships (8.EE.8a). Four out of 24 problems include a real world scenario. These are all routine problems that follow the steps given in example 2, Real Life Application, on page 205.

Overall, students are given multiple opportunities to solve mathematics in real world contexts, but given the way the material is structured, students can easily use the examples provided in the section to figure out which types of relationships or structures to apply to given situations. Problems are routine and occur in the labeled lesson. For example, all Pythagorean theorem problems appear in Chapter 7 in lessons where students are given worked examples and already know what procedures to apply.

Indicator 2d

Balance: The three aspects of rigor are not always treated together and are not always treated separately. There is a balance of the 3 aspects of rigor within the grade.
1/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 partially meet the expectations for not always treating the three aspects of rigor together and not always treating them separately. Overall, there is not a balance of the three aspects of rigor within the grade.

  • Most of the items require calculating a solution, and students are given step-by-step procedures to use when solving them. The activities sometimes offer opportunities for students to engage in procedures with connections to explore concepts, but they are given targeted and scaffolded paths to reach the desired understanding limiting opportunities for students to apply mathematics previously learned.
  • According to the given online lesson plans, many of the application opportunities are not part of the regular program, but are offered as other opportunities.

Criterion 2e - 2g.iii

Practice-Content Connections: Materials meaningfully connect the Standards for Mathematical Content and the Standards for Mathematical Practice
6/10
+
-
Criterion Rating Details

The materials reviewed for Grade 8 partially meet the expectations for practice-content connections. The MPs are identified and sometimes used to enrich mathematics content. The materials rarely attend to the full meaning of each practice. The materials reviewed for Grade 8 partially attend to an emphasis on mathematical reasoning. Overall, students are prompted to construct viable arguments, but there are not sufficient opportunities for students to analyze the arguments of others or for teachers to assist students in analyzing the arguments of others. The materials attend to the specialized language of mathematics.

Indicator 2e

The Standards for Mathematical Practice are identified and used to enrich mathematics content within and throughout each applicable grade.
1/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 partially meet the expectations for identifying the mathematical practices (MPs) and using them to enrich the mathematics content within and throughout the Grade 8 materials.

The MPs are clearly labeled in the teacher edition in the activity portion of each section. They can also be found in the introduction within Laurie’s Notes, where there is also an explanation of how they are connected to the lesson and what the teacher should expect out of the students.

  • A Math Practice box is found in the student edition. It is not labeled with the specific MP for the student, but an explanation can be found in the teacher’s edition explaining the MP in which students are engaging.
  • Sometimes MP1 and MP3 are split and labeled “MPa” and “MPb”, when the full MPs are not reached. For example, in section 4.2, MP1a is listed with a note that “drawing arrow diagrams will help students visualize the slope triangle.” There is no explanation of what the “a” means. In section 4.3, MP3a is listed, and the teacher is asked to use “volunteers to justify their procedures and explain why their procedure shows a proportional relationship.” An explanation of what the “a” means is not provided.
  • The MPs are also identified in the online lesson plans. Each lesson has the specific MP stated in a box in the upper right hand corner, and within the lesson, there is a section that states the focus of the MP. This is generally an explanation of what to look for while students are engaging in the problems, but sometimes it offers a question to ask the students.

The MPs are identified for the student on page iv in the beginning of the student textbook as well as in a Math Practice box located in the activities. The Math Practice boxes cause students to think about the habits of mind to be used while solving problems, but sometimes it is not clear which MP is connected to the activity since the numbers 1 through 8, used to identify the MPs in the standards, are not used in the student textbook within the series.

  • On page 19 in the student textbook, the Math Practice box is labeled “Use Operations” and asks students, “What properties of operations do you need to use in order to find the value of x?” This appears to be a prompt more than the identification of a math practice.
  • On page 49, the box is labeled “Justify Conclusions,” connecting it to Math Practice 3, and asks students what information they need to make a conclusion.
  • The box on page 203 is labeled Use Technology to Explore, and students are asked how they decided on the values they used in setting the calculator window.
  • On page 355, students are asked how repeating calculations assist them in describing the pattern in the activity. The box is labeled Repeat Calculations.

It should also be noted that the Math Practices are only identified within lesson activities and class examples. They are not identified within the problem set. For example, teachers could be aware that part of MP3 is being addressed in item 30 on page 24 as the problem is labeled Error Analysis and MP6 is being addressed in item 35 on page 24 as the problem is labeled Precision, but these connections are not explicitly made in the materials.

Indicator 2f

Materials carefully attend to the full meaning of each practice standard
1/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 partially meet the expectations for attending to the full meaning of each MP. The MPs are most frequently identified in notes where they are aligned to a particular practice activity or question item. Many times the note is guidance on what the teacher does or says rather than engaging students in the practice. Little evidence was found to show MPs used to enhance understanding of a standard in an intentional way, with the exception on MP8.

The MPs are often applied to problems where they could be beneficial. However, the depth of the MPs is often not met since teachers, not students, engage in the MPs as they show students how to solve the problems. Examples of how MPs are presented in the materials follow:

  • On page 77 in Activity 4 of section 2.6, MP1 is identified. Students are given step-by-step directions on reaching the answer. The end of the problem then tells students that there are three other similar rectangles.
  • In section 5.1, Activities 1 and 2, the materials identifies MP1 when students are “investigating” a given system of equations. The example provides all steps of representing the language of the problem with equations, moving to a table, and then finally a graph. Students would not have to formulate a plan in order to find “the break even point.”
  • MP2 is used quantitatively on page T-148 in the teacher edition in Activity 1 as students work with a partner to find the slope using slope triangles in multiple places on a line. MP2 is identified as being used abstractly on page T-167 in Activity 2 when students arrive at slope-intercept form of the given graph of the relationship. In both instances, students are given explicit directions and explanations of how to engage with the mathematics of the problems.
  • MP4 is rarely identified in situations where students are modeling a mathematical problem and making choices about that process. This MP is frequently identified in situations where a particular form of modeling is already chosen for students. In many situations, it is labeled with directions for how the teacher should “model” rather than guidance on experiences where students engage with mathematical modeling. Examples can be found in the following lessons:
    • Lesson 1.3 - The teacher is prompted to use algebra tiles “if students are familiar with algebra tiles.”
    • Lesson 2.3 “Set up a table …”
    • Lesson 3.3 “This table helps to organize data.”
    • Lesson 8.3 - The teacher is given guidance on different ways to measure a sphere and use it to make a net for a cylinder. Teacher/students are “modeling” the conceptual connection, but they are not mathematically modeling a problem situation. All activities are guided step-by-step.
  • MP5 is rarely identified in a problem solving situation or in a situation where students must choose a tool. MP5 is frequently labeled when the materials suggest a specific tool for teachers to give to students. However, guiding questions provided to the student may help develop some aspects of MP5 (i.e., page 143 asks “What are some advantages and disadvantages of using a graphing calculator to graph a linear equation?”) Language from the teacher edition that illustrates how MP5 is typically presented in the materials follows:
    • Lesson 6.2 - “If available, provide square tiles to students.”
    • Lesson 10.5 - “In the first two activities, students will use calculators to multiply very large and very small numbers.”
    • Lesson 10.7 - “You may wish to give students access to calculators for this activity.”
    • Lesson 9.2 - “It is helpful to model this with a piece of spaghetti.”
  • MP7 is identified on page T-27 in Activity 2. In this example, structure is used as the materials identifies the area of the base as B instead of using each specific area formula. This is explained in the materials for the teacher, but the students are not discussing or arriving at this use of structure.
  • MP8 is used appropriately in many activities as students are completing tables of repeated examples to arrive at a conclusion. On page 76 in Activities 2 and 3, students experiment with the perimeters and areas of similar figures to discover how they change when the dimensions of the figures change.

Indicator 2g

Emphasis on Mathematical Reasoning: Materials support the Standards' emphasis on mathematical reasoning by:
0/0

Indicator 2g.i

Materials prompt students to construct viable arguments and analyze the arguments of others concerning key grade-level mathematics detailed in the content standards.
1/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 partially meet the expectations for prompting students to construct viable arguments and analyze the arguments of others concerning key grade-level mathematics detailed in the content standards. While the material prompts students to construct their own arguments, there are few times when they are asked to consider and critique the reasoning of their peers.

In many cases, students are asked to construct arguments and justify them, but there are limited opportunities for them to critique and provide feedback to another student or student groups. Prompts in the “Math Practice” box found in the activities in the student textbook include questions requiring explanations and/or justifications.

  • In section 3.3, after completing Activity 2 with a partner, students are asked to analyze a given conjecture about the sum of the interior angles of any polygon, including convex polygons. They are told to “explain,” but there is no instruction or prompt aimed at considering the reasoning of others in order to build on knowledge or refine thinking.
  • On pages T-2 and T-3, MP3 is identified when the teacher asks “What rule did you write for the sum of the angle measures of a triangle?” A critique of the problem is not required, and the students are not asked to communicate with other students. This also occurs on page 49 in activity 4 as the teacher asks “What conjectures can you make about the two rectangles?” This could lead to an in-depth mathematical discussion, but there is no guidance for teachers that could ensure students would discuss and critique each other appropriately.

There are many explain “how” prompts, but students are asked to explain “why” they are able to use a certain procedure in many cases, which limits the arguments students may write or verbalize.

  • For example, on page 119, students are asked how they can find the sum of both interior and exterior angle measures of given polygons, but they are not asked to explain why it is possible to calculate them.
  • In Section 3.2, Angles of Triangles, students are working to prove that the sum of all three interior angles in a triangle measures 180 degrees in Activity 1 using their prior knowledge of parallel lines and transversals. Both MP3 and MP6 are identified by the publisher for these connected activities. Both MPs are correctly identified and met if students are given the opportunity to share their arguments with other groups in order to critique the reasoning, but the tmaterial does not prompt this conversation. An explanation for the teacher is provided on page T-110.
  • MP6 is often used to remind students about vocabulary and units. For example, on page T-56 discussion of appropriately saying (x, -y) is found. Students should say “the opposite of y” and not “negative y.” On page T-79 in example 3, the material reminds teachers to “make sure students include the correct units in their answers.”

Students are asked to engage in an Error Analysis in many of the lessons. While these problems provide an opportunity for students to “describe and correct the error,” most of the errors are based on procedures that are completed incorrectly instead of requiring students to use mathematical reasoning and conceptual knowledge to strengthen an argument. For example, in item 17 of section 7.5, students must identify the error in using the distance formula to calculate the distance between two points. In the given solution, the error was in subtracting, instead of adding, the area of the squares before finding the square root. Another example is problem 13 of section 8.2; the diameter was used instead of the radius when calculating the volume of a cone with the given formula. An exception is found in item 14 of Lesson 5.4 when students must find the error in the given response, which also includes a statement about the system of equations having infinitely many solutions.

Indicator 2g.ii

Materials assist teachers in engaging students in constructing viable arguments and analyzing the arguments of others concerning key grade-level mathematics detailed in the content standards.
1/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 partially meet the expectations for assisting teachers in engaging students in constructing viable arguments and analyzing the arguments of others concerning key grade-level mathematics detailed in the content standards.

The materials, especially the activities, encourage student collaboration and discussion. Students are engaged in constructing arguments in terms of explaining why and justifying their answers, but students are rarely engaged in analyzing the work and arguments of others and critiquing that specific work. Many of the activities would lend themselves to this kind of class discussion and debate, but the materials do not provide much support for teachers to use the given materials to engage students in meaningful discourse.

  • In section 2.4, MP3 is often identified in Laurie’s Notes for the teacher on pages T-61 through T-64 in reference to certain activities or examples. On page T-62 in example 1, the teacher is told to “note that the relationships between the coordinates of the vertices of a figure before and after rotation are not given” and then asked to explore the relationship if students are ready. Based on this note, students may or may not explore the relationship, and if they do, the teacher is not provided specific support, such as possible student responses, to help guide the discussion.
  • In extension 4.2, “students are asked to make a conjecture and then justify their answers.” The publisher does include a note about the importance of constructing arguments, but there is no guidance for the teacher on having them critique the reasoning of other students.
  • In the Activities for Section 4.7, within the Laurie’s Notes, teachers are told to “take time for discussions and explanations so that students’ reasoning is revealed,” but there are no prompts or possible responses to help the teacher facilitate this discussion.
  • MP3 is misidentified on page T-2 and T-3 in Lesson 1.1 when the teacher asks “What rule did you write for the sum of the angle measures of a triangle?” Students do not have to construct a viable argument to support their rule or critique the reasoning of others that supports their rules.

Few directions are provided for the teacher other than “have students share out,” “listen for _____ methods,” etc. A few places within the teacher notes include MP3 outlined with relevant questioning and prompting for students to make conjectures about completed work within lesson activities. (For example, pages T-49, T-55, T-61, T-85, and T-111). Overall, teachers are given opportunity to engage students with MP3, but are not provided much assistance.

Indicator 2g.iii

Materials explicitly attend to the specialized language of mathematics.
2/2
+
-
Indicator Rating Details

The materials reviewed for Grade 8 meet the expectations for explicitly attending to the specialized language of mathematics.

  • At the beginning of each exercise there is a section called Vocabulary and Concept Check. This section requires students to write about mathematics using precise language.
  • Vocabulary is taught through a Key Vocabulary box found in most lessons, and vocabulary words are identified throughout the textbook. These boxes list the word and the page on which it is located. Once on the identified page, the word will be bold, highlighted in yellow, and defined.
  • At the end of each activity, there is a section called What Is Your Answer? Students are required to describe their thoughts with precise language.
  • The teacher and student edition use consistent specialized language that does include visual examples where appropriate. Notes throughout the teacher edition give guidance on how to address potential language misconceptions. Each Topic’s Math Background Notes includes the vocabulary that may need to be reviewed and guidance on potential misconceptions that often include language misconceptions.
  • Examples of misused vocabulary were not found within the student or teacher materials.

Gateway Three

Usability

Not Rated

Criterion 3a - 3e

Use and design facilitate student learning: Materials are well designed and take into account effective lesson structure and pacing.
0/8

Indicator 3a

The underlying design of the materials distinguishes between problems and exercises. In essence, the difference is that in solving problems, students learn new mathematics, whereas in working exercises, students apply what they have already learned to build mastery. Each problem or exercise has a purpose.
0/2

Indicator 3b

Design of assignments is not haphazard: exercises are given in intentional sequences.
0/2

Indicator 3c

There is variety in what students are asked to produce. For example, students are asked to produce answers and solutions, but also, in a grade-appropriate way, arguments and explanations, diagrams, mathematical models, etc.
0/2

Indicator 3d

Manipulatives are faithful representations of the mathematical objects they represent and when appropriate are connected to written methods.
0/2

Indicator 3e

The visual design (whether in print or online) is not distracting or chaotic, but supports students in engaging thoughtfully with the subject.
0/0

Criterion 3f - 3l

Teacher Planning and Learning for Success with CCSS: Materials support teacher learning and understanding of the Standards.
0/8

Indicator 3f

Materials support teachers in planning and providing effective learning experiences by providing quality questions to help guide students' mathematical development.
0/2

Indicator 3g

Materials contain a teacher's edition with ample and useful annotations and suggestions on how to present the content in the student edition and in the ancillary materials. Where applicable, materials include teacher guidance for the use of embedded technology to support and enhance student learning.
0/2

Indicator 3h

Materials contain a teacher's edition (in print or clearly distinguished/accessible as a teacher's edition in digital materials) that contains full, adult-level explanations and examples of the more advanced mathematics concepts in the lessons so that teachers can improve their own knowledge of the subject, as necessary.
0/2

Indicator 3i

Materials contain a teacher's edition (in print or clearly distinguished/accessible as a teacher's edition in digital materials) that explains the role of the specific grade-level mathematics in the context of the overall mathematics curriculum for kindergarten through grade twelve.
0/2

Indicator 3j

Materials provide a list of lessons in the teacher's edition (in print or clearly distinguished/accessible as a teacher's edition in digital materials), cross-referencing the standards covered and providing an estimated instructional time for each lesson, chapter and unit (i.e., pacing guide).
0/0

Indicator 3k

Materials contain strategies for informing parents or caregivers about the mathematics program and suggestions for how they can help support student progress and achievement.
0/0

Indicator 3l

Materials contain explanations of the instructional approaches of the program and identification of the research-based strategies.
0/0

Criterion 3m - 3q

Assessment: Materials offer teachers resources and tools to collect ongoing data about student progress on the Standards.
0/10

Indicator 3m

Materials provide strategies for gathering information about students' prior knowledge within and across grade levels.
0/2

Indicator 3n

Materials provide strategies for teachers to identify and address common student errors and misconceptions.
0/2

Indicator 3o

Materials provide opportunities for ongoing review and practice, with feedback, for students in learning both concepts and skills.
0/2

Indicator 3p

Materials offer ongoing formative and summative assessments:
0/0

Indicator 3p.i

Assessments clearly denote which standards are being emphasized.
0/2

Indicator 3p.ii

Assessments include aligned rubrics and scoring guidelines that provide sufficient guidance to teachers for interpreting student performance and suggestions for follow-up.
0/2

Indicator 3q

Materials encourage students to monitor their own progress.
0/0

Criterion 3r - 3y

Differentiated instruction: Materials support teachers in differentiating instruction for diverse learners within and across grades.
0/12

Indicator 3r

Materials provide strategies to help teachers sequence or scaffold lessons so that the content is accessible to all learners.
0/2

Indicator 3s

Materials provide teachers with strategies for meeting the needs of a range of learners.
0/2

Indicator 3t

Materials embed tasks with multiple entry-points that can be solved using a variety of solution strategies or representations.
0/2

Indicator 3u

Materials suggest support, accommodations, and modifications for English Language Learners and other special populations that will support their regular and active participation in learning mathematics (e.g., modifying vocabulary words within word problems).
0/2

Indicator 3v

Materials provide opportunities for advanced students to investigate mathematics content at greater depth.
0/2

Indicator 3w

Materials provide a balanced portrayal of various demographic and personal characteristics.
0/2

Indicator 3x

Materials provide opportunities for teachers to use a variety of grouping strategies.
0/0

Indicator 3y

Materials encourage teachers to draw upon home language and culture to facilitate learning.
0/0

Criterion 3aa - 3z

Effective technology use: Materials support effective use of technology to enhance student learning. Digital materials are accessible and available in multiple platforms.
0/0

Indicator 3aa

Digital materials (either included as supplementary to a textbook or as part of a digital curriculum) are web-based and compatible with multiple internet browsers (e.g., Internet Explorer, Firefox, Google Chrome, etc.). In addition, materials are "platform neutral" (i.e., are compatible with multiple operating systems such as Windows and Apple and are not proprietary to any single platform) and allow the use of tablets and mobile devices.
0/0

Indicator 3ab

Materials include opportunities to assess student mathematical understandings and knowledge of procedural skills using technology.
0/0

Indicator 3ac

Materials can be easily customized for individual learners. i. Digital materials include opportunities for teachers to personalize learning for all students, using adaptive or other technological innovations. ii. Materials can be easily customized for local use. For example, materials may provide a range of lessons to draw from on a topic.
0/0

Indicator 3ad

Materials include or reference technology that provides opportunities for teachers and/or students to collaborate with each other (e.g. websites, discussion groups, webinars, etc.).
0/0

Indicator 3z

Materials integrate technology such as interactive tools, virtual manipulatives/objects, and/or dynamic mathematics software in ways that engage students in the Mathematical Practices.
0/0

Additional Publication Details

Report Published Date: Fri Feb 13 00:00:00 UTC 2015

Report Edition: 2013

Title ISBN Edition Publisher Year
Big Ideas Math Common Core Student Edition Blue 978-1-60840-451-3 Big Ideas Learning, LLC 2014
Big Ideas Math Common Core Teacher Edition Blue 978-1-60840-458-2 Big Ideas Learning, LLC 2014

About Publishers Responses

All publishers are invited to provide an orientation to the educator-led team that will be reviewing their materials. The review teams also can ask publishers clarifying questions about their programs throughout the review process.

Once a review is complete, publishers have the opportunity to post a 1,500-word response to the educator report and a 1,500-word document that includes any background information or research on the instructional materials.

Educator-Led Review Teams

Each report found on EdReports.org represents hundreds of hours of work by educator reviewers. Working in teams of 4-5, reviewers use educator-developed review tools, evidence guides, and key documents to thoroughly examine their sets of materials.

After receiving over 25 hours of training on the EdReports.org review tool and process, teams meet weekly over the course of several months to share evidence, come to consensus on scoring, and write the evidence that ultimately is shared on the website.

All team members look at every grade and indicator, ensuring that the entire team considers the program in full. The team lead and calibrator also meet in cross-team PLCs to ensure that the tool is being applied consistently among review teams. Final reports are the result of multiple educators analyzing every page, calibrating all findings, and reaching a unified conclusion.

Math K-8 Rubric and Evidence Guides

The K-8 review rubric identifies the criteria and indicators for high quality instructional materials. The rubric supports a sequential review process that reflect the importance of alignment to the standards then consider other high-quality attributes of curriculum as recommended by educators.

For math, our rubrics evaluate materials based on:

  • Focus and Coherence

  • Rigor and Mathematical Practices

  • Instructional Supports and Usability

The K-8 Evidence Guides complement the rubric by elaborating details for each indicator including the purpose of the indicator, information on how to collect evidence, guiding questions and discussion prompts, and scoring criteria.

X